

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

This is your complete gut microbiome analysis containing condition related findings with food and supplements recommendation to optimize your gut health.

SECTION 1: Summary of your results

0-49 represents Poor • 50-79 represents Needs work • 80-100 represents Satisfactory Gut Health Score 67.24 Needs work Vour Gut Health Score is computed based on all the bacteria & archaea enlisted in section 2. Assuming all your bacterial taxa are within optimal ranges, then your score will be 100. For every taxon that is out of range, your score will decrease accordingly to the degree that it deviates from the optimal range Diversity Score

Your Diversity Score

Your Diversity Score is computed using the Shannon Index, which accounts for the richness and evenness of the species found in your gut. Your score is a percentile value compared to the rest of the people who have taken the Vitract Gut Microbiome Test. Note that apart from diet, other factors such as age, geographical location, genetics, sleep patterns, and antibiotic use, can affect your diversity score

Disclaimer

 This report is not a diagnosis. It is for educational and informational purposes only. 'All associations between your microbiome profile, disease conditions and recommended food suggestions, are based on published peer-reviewed research papers. Note that other factors such as genetics, lifestyle, environment, etc, can contribute to disease or health associations. Always seek the advice of your doctor or healthcare provider for any issues relating to your diagnosis, disease prevention, impairment, symptoms or treatment. This report does not replace the role of your healthcare provider.

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

SECTION 2: Bacteria life forms

Health-associated bacteria	Disease-associated bacteria
Probiotic bacteria	Pathobiont overgrowth
Commensals	Pathogens

Probiotic bacteria - 52

Probiotic bacteria are live microorganisms that, when consumed in sufficient quantities, provide health benefits by promoting a balanced and healthy gut microbiota.

All bacteria optimal ranges in section 2, with the exception of *Dorea, Coprococcus, Clostridium butyricum, Veillonella, and Enterococcus faecalis*, are based on the recommendations of Dr. Jason Hawrelak of Probiotic Advisor.

Page 2

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

Commensals - 84

Gut commensals are microorganisms that coexist with the host in the gastrointestinal tract without causing harm. They contribute to host wellbeing and gut homeostasis.

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

Pathobionts - 64

Pathobionts are microorganisms that typically reside harmlessly in the gut but have the potential to cause disease under certain conditions or when the host's immune system is compromised. Pathobionts in this test are shown in 4 sub-categories:

#	Inflammatory lipopolys	accharide producers	Implication					
1	Proteobacteria - 13.14% High	Optimal range (0-4%) 13.14% 8 10	High Overabundance of pathogenic <i>Proteobacteria</i> can indicate an imbalance in the gut microbiota, known as dysbiosis. Dysbiosis can lead to various health issues including inflammation and disruption in the gut barrier, allowing harmful substances to enter the bloodstream.					

π	Merriane-producing archaea	Implication
1	Methanobrevibacter - 0% Optimal Optimal range (0-0.01%)	Optimal Levels seen are optimal.
	0 0.01 0.02 0.03 0.04 0.05	

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

#	Enterotoxic & Inflammatory pathobionts	Implication				
1	Enterococcus faecalis - 0% Optimal Optimal range (0-0.06%)	Optimal Levels seen are optimal.				
	0 0.15 0.30 0.45 0.60 0.75					
2	Escherichia coli - 0.67% High Optimal range (0-0.1%)	High An overabundance of pathogenic or toxin-producing <i>E. coli</i> strains can lead to various health complications such as diarrheal, peritonitis, colitis,				
	0 0.025 0.05 0.075 0.1 0.125	bacteremia, and urinary tract infections.				
3	Fusobacterium - 0.01% Optimal Optimal range (0-0.01%) 0.01% 0.01% 0.01%	Optimal Levels seen are optimal.				
	0 0.01 0.02 0.03 0.04 0.05					

Pathogens

Detected Not Detected represents bacteria detection.

#	Pathogens	Implication
1	Campylobacter - 0% Not Detected	Not Detected
2	Shigella - 0% Not Detected	Not Detected
3	Salmonella - 0% Not Detected	Not Detected
4	Staphylococcus - 0% Not Detected	Not Detected
5	Vibrio - 0% Not Detected	Not Detected
6	Yersinia - 0% Not Detected	Not Detected
7	Helicobacter Pylori - 0% Not Detected	Not Detected
8	Clostridioides difficile - 0% Not Detected	Not Detected

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

SECTION 3: Insights into metabolites

Please note that the predicted metabolites and enzymes in this section are computed based on your gut bacterial composition, and not the direct measurement of the metabolite or enzyme

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

The closer your score is	to 100, the better.	VITAMINS PRODUCERS • Above 50: Satisfactory • 0 to 50: Needs work							
Metabolites	Percentile score	Impact							
Vitamin B1 (Thiamin) Satisfactory	0	Serves as a coenzyme in carbohydrate metabolism Cellular growth and repair Essential for the proper functioning of the enteric nervous system							
Vitamin B2 (Riboflavin) Needs work	0	Aids in the breakdown of carbohydrates, proteins, and fats for energyAntioxidant defenseSupports the growth and maintenance of gut epithelial cells							
Vitamin B3 (Niacin) Satisfactory	0	Aids metabolism of fats, carbohydrates and proteins Aids in neurotransmitter synthesis Essential for maintaining skin health							
Vitamin B5 (Pantothenic Acid) Satisfactory	0	Energy production through metabolism of carbohydrates, proteins, and fats Contributes to the synthesis of acetylcholine Fatty acid and hormone synthesis							
Vitamin B6 (Pyridoxine) Satisfactory	0	Essential for the synthesis of neurotransmitters like serotonin, dopamine, and GABA Supports the immune system							
Vitamin B7 (Biotin) Satisfactory	0	Fatty acid synthesis Carbohydrate metabolism Cell growth and maintenance of gene expression							
Vitamin B9 (Folate) Satisfactory	0	DNA synthesis and repairMetabolism of amino acidsInvolved in the synthesis of serotonin, dopamine, and norepinephrine							
Vitamin B12 (Cobalamine) Satisfactory	0	Supports neurological function Red blood cell formation Energy production							
Vitamin K2 Satisfactory	0	Essential for proper blood clotting and coagulation Improves bone health Prevents arterial calcification and reduces the risk of atherosclerosis							

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

		TOXIN F	DXIN PRODUCERS								
		• 0 to 50:	Satisfactory • 51 to 74:	Needs work	Above 74: High	n l					
		• 0 to 25:	Satisfactory • 26 to 74:	Needs work	• Above 75: Hig	h For Methane					
The closer your score	is to 0, the better.	• 0 to 50:	Satisfactory • Above 50	Needs work	For Trimethylami	ne (TMA) and Trimet	hylamine-N-Oxide (TMAO)				
Metabolites	Percentile sco	ore	Impact								
Hydrogen sulfide	58		Increased risk of col	prectal cancer	Impaired mu	icin production	Bloating and abdominal pain				
Needs work	0	100				1 11					

Needs work	0	_100	Malodorous breath								
Ammonia Satisfactory	0	100	Disruptions in the intestinal barrier function Inflammation and abdominal pain Neurotoxic effect Gut microbiota disruption								
Methane Satisfactory		100	Abdominal distension or bloating Constipation, cramping and flatulence Increased methane breath								
Trimethylamine (TMA) and Trimethylamine-N- Oxide (TMAO) Satisfactory	0	100	Increased cardiovascular health risk Cognitive function and neurological disorders Inflammation and lipid accumulation in the blood vessels								
Lipopolysaccharides (LPS) High	0	93 	Increased inflammation Metabolic dysfunction and insulin resistance Neurological effect Increased contribution to chronic diseases Increased Increased								

Scores too close to 0 d	or 100 are not desirable.	DETOXIFICATION BIOMARKERS • 26 to 75: Satisfactory • 0 to 25: Needs work • Above 75: High
Metabolites	Percentile score	Impact
Beta glucoronidase Satisfactory	0	Deconjugation of bile acids Influence the pharmacokinetics of drugs Regulation of physiological estrogen metabolism
T I I		ONGEVITY

 Metabolites
 Percentile score
 Impact

 Indoles and Phenols
 93
 Indole is a precursor for neurotransmitter synthesis
 Indoles regulates mood and sleep-wake cycles

 Satisfactory
 0
 100
 Phenol reduces oxidative stress and inflammation

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

SECTION 4: Food and supplement recommendation

Bacteria out of range

			1		112.1				112.1	0		Escherichia	112.1	0 1 1 1
Akkermansia	LOW	, Bindobacterium	LOW	, Bilophila	High	, Biautia	LOW	, Clostriaium	High	, Coprococcus	Optimal	° coli	High	, Oxalobacter

Modifiers	Bacteria shifted	Scientific evidence
FOOD	Increase Akkermansia ^{1. 2. 3}	1. Fish Oil, but Not Olive Oil, Ameliorates Depressive-Like Behavior and
To include: extra virgin olive oil ¹ ,	Increase Bifidobacterium ^{5.7.8}	2. Ascophyllum nodosum polysaccharide regulates gut microbiota meta
Io include: extra virgin olive oil ', sea weed ² , chaga (mushroom) ³ , Pulses ⁵ , Konjaku flour ⁷ , white button mushrooms ⁸ , rye ⁹ ,	Reduce Bilophila ^{9, 10, 11, 12, 13}	3. Methanol extract of Inonotus obliquus improves type 2 diabetes melli
	Increase Blautia ^{2, 15, 16, 17}	4. Concentrated Raw Fibers Enhance the Fiber-Degrading Capacity of
¹² , Garlic ¹³ , pomegranate ¹⁵ , high	Reduce Clostridium ^{19, 20, 21}	5. In vitro fermentation of lupin seeds (Lupinus albus) and broad beans (
amylose cornstarch ¹⁶ , broccoli ¹⁷ ,	Reduce Coprococcus ²²	6. Dietary supplementation with olive oil co-products rich in polyphenol
tea ²⁰ , potatoes ²² , gallic acid	Reduce Escherichia coli ^{23, 24, 25, 26}	7. Amelioration of gut dysbiosis and gastrointestinal motility by konjac ol
(food additive) ²³ , basil ²⁴ ,	Poduco Protoobactoria ^{3, 28, 29, 30, 31}	8. Effect of Agaricus bisporus Polysaccharides on Human Gut Microbiot
walnuts ²⁸ , Okra ²⁹ , rhubarb ³⁰ ,		9. The effects of fermented rye products on gut microbiota and their as
mulberry fruit polysaccharide ³¹ , Kiwifruit ³³	Increase Roseburia	10. Tartary Buckwheat (Fagopyrum tataricum) Ameliorates Lipid Metabol
		11. Pistachio Consumption Alleviates Inflammation and Improves Gut Mi
		12. Table grape consumption reduces adiposity and markers of hepatic I
	Reduces Akkermansia ⁴	13. Black garlic melanoidins prevent obesity, reduce serum LPS levels a
		14. Resveratrol modulates the gut microbiota of cholestasis in pregnant
To avoid: oats ⁴ , red wine polyphenols ¹⁴ , wheat ¹⁸ , lemon ²⁷ ,		15. Effects of Pomegranate Peel Polyphenols Combined with Inulin on
	Reduces Blautia	full references for recommendations can be found on supplementary
	Increase Escherichia coli 27	pages
giucose (sugar)	Reduces Roseburia ³⁴	
PROBIOTICS	Increase Akkermansia ^{1.2}	1. Probiotic Lactobacilli Administration Induces Changes in the Fecal Mi
ковіопся Го include: Lactobacillus	Increase Bifidobacterium ³	2. Bifidobacterium longum subsp. longum BL21 ameliorates alcoholic liv
Johnsonii ', Bifidobacterium longum ² , Bifidobacterium	Reduce Bilophila ^{5, 6}	3. Mouse intestinal microbiome modulation by oral administration of a
adolescentis ³ , Bifidobacterium	Increase Blautia ^{7.8}	4. Administration of Aspergillus oryzae suppresses DSS-induced colitis.
plantarum ⁶ , Lactobacillus	Reduce Clostridium ^{10, 11}	5. Bifidobacterium bifidum TMC3115 ameliorates milk protein allergy in
rhamnosus ⁸ , Lactobacillus	Reduce Coprococcus ¹⁴	6. Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gu
shirota ¹¹ , Saccharomyces	Reduce Escherichia coli ^{16, 17}	7. Exopolysaccharides from Lactobacillus plantarum YW11 improve imm
boulardii ¹⁴ , Lactobacillus rhamnosus qq ¹⁷ , Bacillus	Reduce Proteobacteria ¹⁹	8. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longu
amyloliquefaciens ¹⁹		9. Protective effect of Pediococcus pentosaceus LiO5 on diarrhea-pred
	Increase Rosebuna	10. The Impact in Intestines and Microbiota in BALB/c Mice Through Co
	Reduces Bifidobacterium ⁴	11. Intestinal Microbiota Profiles of Healthy Pre-School and School-Age
	Reduces Blautia ⁹	12. Gaseous CO2 signal initiates growth of butyric-acid-producing Clost
	Increase Clostridium ¹²	13. Lactobacillus plantarum-Derived Extracellular Vesicles Modulate Ma
To avoid: Koji aspergillus oryzae ⁴ , Pediococcus pentosaceus ⁹ ,		14. Saccharomyces cerevisiae boulardii CNCM I-1079 supplementation i
bacillus subtilis,Lactobacillus		15. Evaluation of the therapeutic effect and dose-effect of Bifidobacteri
breve ¹⁵ , Bacillus subtilis ¹⁸ ,		full references for recommendations can be found on supplementary
Lactobacillus paracasei ²¹ ,	Increase Proteobacteria ²¹	pages
	Reduces Roseburia ²³	

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

SECTION 4: Food and supplement recommendation

Bacteria out of range

	-				1.12 1				112.1	0		Escherichia	1.12 1	0 1 1 1
Akkermansia	Low	, Bifidobacterium	Low	, Bilophila	High	, Blaufia	Low	, Clostridium	High	, Coprococcus	Opfimal	, coli	High	, Oxalobacter

Modifiers	Bacteria shifted	Scientific evidence				
SUPPLEMENTS	Increase Akkermansia ¹	1. Rutin alleviates colon lesions and regulates gut microbiota in diabetic				
To include: Rutin ¹ , quercetin ⁵ , bentonite ⁷ , Curcumin ⁹ , whey protein supplement ¹⁰ , Glucomannan ¹² , Baicalin ¹⁴	Reduce Bilophila ⁵	2. Increasing breast milk betaine modulates Akkermansia abundance in				
	Increase Blautia ⁷	3. Structural Insights into Amelioration Effects of Quercetin and Its Glyc				
	Reduce Clostridium ⁹	4. Shen-Ling-Bai-Zhu-San (SL) and SL Derived-Polysaccharide (PL) Am				
	Reduce Coprococcus ¹⁰	5. A combination of quercetin and resveratrol reduces obesity in high-fa				
	Reduce Escherichia coli ¹²	6. Propionate-Producing Consortium Restores Antibiotic-Induced Dysbi				
	Reduce Proteobacteria ¹⁴	7. Microbiome Remodeling via the Montmorillonite Adsorption-Excretio				
	Acadee Froicobaciena	8. Glucosamine Ameliorates Symptoms of High-Fat Diet-Fed Mice by R				
		9. Prebiotic Potential and Chemical Composition of Seven Culinary Spi				
	Reduces Akkermansia ²	10. Effect of a Co-Feed Liquid Whey-Integrated Diet on Crossbred Pigs'				
	Reduces Bifidobacterium ⁴	11. Taxifolin increased semen quality of Duroc boars by improving gut m				
	Increase Bilophila ⁶	12. Antibacterial activity of konjac glucomannan/chitosan blend films an				
	Poducos Blautia ⁸	13. Preparation of selenium/zinc-enriched probiotics and their effect on				
		14. Protective effect of baicalin on the regulation of Treg/Th17 balance,				
To avoid: betaine ² , Shen Ling Bai		15. Helicobacter pylori eradication with bismuth quadruple therapy lead				
Zhu San [*] , propionate [°] , Glucosamine ⁸ , Taxifolin ¹¹ , selenium ¹³ , Bismuth Salts ¹⁵ ,	Increase Escherichia coli	full references for recommendations can be found on supplementary pages				
	Increase Proteobacteria ¹⁵					
Cannabinoids	Reduces Roseburia ¹⁶					
PREBIOTICS	Increase Akkermansia ¹	1. Pretreatment with chitosan oligosaccharides attenuate experimental s				
To include: chitooligosaccharides	Increase Bifidobacterium ²	2. Relative abundance of the Prevotella genus within the human gut mi				
¹ , arabinogalactan ² , inulin ⁴ ,	Reduce Bilophila ^{4,5}	3. Characterization of fecal fat composition and gut derived fecal micro				
oligosaccharides ⁸ , fructo-	Reduce Clostridium ^{7.8}	4. Prebiotic inulin-type fructans induce specific changes in the human				
oligosaccharides ⁹ , mastic gum ¹⁰	Reduce Escherichia coli ^{9, 10}	5. Effect of lactulose intervention on gut microbiota and short chain fatt				
		6. Diets high in resistant starch and arabinoxylan modulate digestion pr				
		7. Pharmacological benefits of Acacia against metabolic diseases: intest				
		8. Prebiotic effect of an infant formula supplemented with galacto-oligo				
		9. Dietary cellulose, fructooligosaccharides, and pectin modify fecal pro				
		10. Spices as Sustainable Food Preservatives: A Comprehensive Review				
		11. In vitro fermentation of raffinose by the human gut bacteria.				
		12. Chitooligosaccahrides: Digestion characterization and effect of the				
		<u>13. Effect of Prebiotic on Microbiota, Intestinal Permeability, and Glycem</u>				
		full references for recommendations can be found on supplementary pages				
To avoid: raffinose(sugar beet) ¹¹ ,	Increase Escherichia coli ¹¹					
oligofructose-enriched inulin ¹³	Reduces Roseburia ¹³					

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

SECTION 4: Food and supplement recommendation

Bacteria out of range

Al.I	1	Difference	1	Dilavahila	1.12 auto	District	1	Ole et si eli une	1.15 auto	0	Outine	Escherichia	1.15 auto	Qualatastas
Akkermansia	LOW	, Bindobacterium	LOW	, Bilophila	High	, Biautia	LOW	, Clostriaium	High	, Coprococcus	Optimal	' coli	High	, Oxalobacter

Modifiers	Bacteria shifted	Scientific evidence
LIFESTYLE CHANGES	Increase Bifidobacterium ²	1. Fucoidan Improves D-Galactose-Induced Cognitive Dysfunction by P
To include: mediterranean diet 2 , nuts 3 , Fiber 6 , Exercise 9	Reduce Bilophila ³	2. The gut microbial community in metabolic syndrome patients is modi
	Reduce Clostridium ⁶	3. Pistachio Consumption Alleviates Inflammation and Improves Gut Mi
	Reduce Proteobacteria ⁹	4. Interactions between Diet, Bile Acid Metabolism, Gut Microbiota, and
		5. Smoking cessation alters intestinal microbiota: insights from quantitat
		6. [Clinical benefits after soluble dietary fiber supplementation: a rando
		7. Gut Microbiome Composition in Non-human Primates Consuming a
		8. Effects of the dietary protein level on the microbial composition and
		9. Effect of an 8-week Exercise Training on Gut Microbiota in Physically
		10. Metagenomic analyses of alcohol induced pathogenic alterations in
		11. Nuts and their Effect on Gut Microbiota, Gut Function and Symptom
		12. Gut microbiome and metabolome in a non-human primate model of
		full references for recommendations can be found on supplementary
	Paduaaa Akkarmanaia	pages
To avoid: high-saturated fat diet ¹ ,	Reduces Blautia °	
smoking ⁵ , low protein diet ⁸ ,	Increase Coprococcus ⁸	
alcoholic beverages	Increase Proteobacteria ¹⁰	

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

SUPPLEMENTARY TABLE 1: References for dietary recommendations.

Food references

- 1. Fish Oil, but Not Olive Oil, Ameliorates Depressive-Like Behavior and Gut Microbiota Dysbiosis in Rats under Chronic Mild Stress.
- 2. Ascophyllum nodosum polysaccharide regulates gut microbiota metabolites to protect against colonic inflammation in mice.
- 3. Methanol extract of Inonotus obliquus improves type 2 diabetes mellitus through modifying intestinal flora.
- 4. Concentrated Raw Fibers Enhance the Fiber-Degrading Capacity of a Synthetic Human Gut Microbiome.
- 5. In vitro fermentation of lupin seeds (Lupinus albus) and broad beans (Vicia faba): dynamic modulation of the intestinal microbiota and metabolomic output.
- 6. Dietary supplementation with olive oil co-products rich in polyphenols: a novel nutraceutical approach in monogastric animal nutrition.
- 7. Amelioration of gut dysbiosis and gastrointestinal motility by konjac oligo-glucomannan on loperamide-induced constipation in mice.
- 8. Effect of Agaricus bisporus Polysaccharides on Human Gut Microbiota during In Vitro Fermentation: An Integrative Analysis of Microbiome and Metabolome.
- 9. The effects of fermented rye products on gut microbiota and their association with metabolic factors in Chinese adults an explorative study.
- 10. Tartary Buckwheat (Fagopyrum tataricum) Ameliorates Lipid Metabolism Disorders and Gut Microbiota Dysbiosis in High-Fat Diet-Fed Mice.
- 11. Pistachio Consumption Alleviates Inflammation and Improves Gut Microbiota Composition in Mice Fed a High-Fat Diet.
- 12. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice.
- 13. Black garlic melanoidins prevent obesity, reduce serum LPS levels and modulate the gut microbiota composition in high-fat diet-induced obese C57BL/6J mice.
- 14. Resveratrol modulates the gut microbiota of cholestasis in pregnant rats.
- 15. Effects of Pomegranate Peel Polyphenols Combined with Inulin on Gut Microbiota and Serum Metabolites of High-Fat-Induced Obesity Rats.
- 16. Starch acylation of different short-chain fatty acids and its corresponding influence on gut microbiome and diabetic indexes.
- 17. Sulforaphane and Sulforaphane-Nitrile Metabolism in Humans Following Broccoli Sprout Consumption: Inter-individual Variation, Association with Gut Microbiome Compos.
- 18. Diet Mediate the Impact of Host Habitat on Gut Microbiome and Influence Clinical Indexes by Modulating Gut Microbes and Serum Metabolites.
- 19. Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions.
- 20. In Vivo Effects of Tea Polyphenol Intake on Human Intestinal Microflora and Metabolism.
- 21. Effect of garlic powder on the growth of commensal bacteria from the gastrointestinal tract.
- 22. Potato resistant starch inhibits diet-induced obesity by modifying the composition of intestinal microbiota and their metabolites in obese mice.
- 23. Antiultraviolet, Antioxidant, and Antimicrobial Properties and Anticancer Potential of Novel Environmentally Friendly Amide-Modified Gallic Acid Derivatives.
- 24. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.
- 25. Antimicrobial activities of widely consumed herbal teas, alone or in combination with antibiotics: an in vitro study,
- 26. Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes.
- 27. Ascorbic acid-dependent gene expression in Streptococcus pneumoniae and the activator function of the transcriptional regulator UlaR2.
- 28. Effects of Walnut and Pumpkin on Selective Neurophenotypes of Autism Spectrum Disorders: A Case Study,
- 29. Supplementation of okra seed oil ameliorates ethanol-induced liver injury and modulates gut microbiota dysbiosis in mice.
- 30. What we already know about rhubarb: a comprehensive review.
- 31. Mulberry leaves ameliorate obesity through enhancing brown adipose tissue activity and modulating gut microbiota.
- 32. Effects of Konjaku Flour on the Gut Microbiota of Obese Patients.
- 33. Butyrogenic, bifidogenic and slight anti-inflammatory effects of a green kiwifruit powder (Kiwi FFG®) in a human gastrointestinal model simulating mild constipation.
- 34. A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota.

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

SUPPLEMENTARY TABLE 1: References for dietary recommendations.

Probiotics references

- 1. Probiotic Lactobacilli Administration Induces Changes in the Fecal Microbiota of Preweaned Dairy Calves.
- 2. Bifidobacterium longum subsp. longum BL21 ameliorates alcoholic liver disease in mice through enhancement of the hepatic antioxidant capacity and modulation of the gut...
- 3. Mouse intestinal microbiome modulation by oral administration of a GABA-producing Bifidobacterium adolescentis strain.
- 4. Administration of Aspergillus oryzae suppresses DSS-induced colitis.
- 5. Bifidobacterium bifidum TMC3115 ameliorates milk protein allergy in by affecting gut microbiota: A randomized double-blind control trial.
- 6. Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats.
- 7. Exopolysaccharides from Lactobacillus plantarum YW11 improve immune response and ameliorate inflammatory bowel disease symptoms.
- 8. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: A preliminary study.
- 9. Protective effect of Pediococcus pentosaceus LiO5 on diarrhea-predominant irritable bowel syndrome in rats.
- 10. The Impact in Intestines and Microbiota in BALB/c Mice Through Consumption of Milk Fermented by Potentially Probiotic Lacticaseibacillus casei SJRP38 and Limosilactob..
- 11. Intestinal Microbiota Profiles of Healthy Pre-School and School-Age Children and Effects of Probiotic Supplementation.
- 12. Gaseous CO2 signal initiates growth of butyric-acid-producing Clostridium butyricum in both pure culture and mixed cultures with Lactobacillus brevis.
- 13. Lactobacillus plantarum-Derived Extracellular Vesicles Modulate Macrophage Polarization and Gut Homeostasis for Alleviating Ulcerative Colitis.
- 14. Saccharomyces cerevisiae boulardii CNCM I-1079 supplementation in finishing male pigs helps to cope with heat stress through feeding behaviour and gut microbiota mo...
- 15. Evaluation of the therapeutic effect and dose-effect of Bifidobacterium breve on the primary Clostridioides difficile infected mice.
- 16. Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens.
- 17. Therapeutic potential of two probiotics in inflammatory bowel disease as observed in the trinitrobenzene sulfonic acid model of colitis.
- 18. Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers.
- 19. Probiotic Bacillus amyloliquefaciens C-1 Improves Growth Performance, Stimulates GH/IGF-1, and Regulates the Gut Microbiota of Growth-Retarded Beef Calves.
- 20. Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced colitis in mice by inhibiting NF-?B activation and lipopolysaccharide production by gut microbiota.
- 21. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults.
- 22. A metagenomic study of the preventive effect of Lactobacillus rhamnosus GG on intestinal polyp formation in Apc(Min/+) mice.
- 23. Exopolysaccharides from Lactobacillus buchneri TCP016 Attenuate LPS- and d-GalN-Induced Liver Injury by Modulating the Gut Microbiota.

Supplements references

- 1. Rutin alleviates colon lesions and regulates gut microbiota in diabetic mice.
- 2. Increasing breast milk betaine modulates Akkermansia abundance in mammalian neonates and improves long-term metabolic health.
- 3. Structural Insights into Amelioration Effects of Quercetin and Its Glycoside Derivatives on NAFLD in Mice by Modulating the Gut Microbiota and Host Metabolism.
- 4. Shen-Ling-Bai-Zhu-San (SL) and SL Derived-Polysaccharide (PL) Ameliorate the Severity of Diarrhea-Induced by High Lactose via Modification of Colonic Fermentation.
- 5. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota.
- 6. Propionate-Producing Consortium Restores Antibiotic-Induced Dysbiosis in a Dynamic in vitro Model of the Human Intestinal Microbial Ecosystem.
- 7. Microbiome Remodeling via the Montmorillonite Adsorption-Excretion Axis Prevents Obesity-related Metabolic Disorders.
- 8. Glucosamine Ameliorates Symptoms of High-Fat Diet-Fed Mice by Reversing Imbalanced Gut Microbiota.
- 9. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts.
- 10. Effect of a Co-Feed Liquid Whey-Integrated Diet on Crossbred Pigs' Fecal Microbiota.
- 11. Tavifolin increased semen quality of Duroc hoars by improving out microbes and blood metabolites

Continues on the next page

838 Walker Rd, Dover, Delaware, 19904, United States

For enquiries, email: hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis, 16S rRNA Sequencing

SUPPLEMENTARY TABLE 1: References for dietary recommendations.

Prebiotics references

- 1. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis.
- 2. Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with ...
- 3. Characterization of fecal fat composition and gut derived fecal microbiota in high-fat diet fed rats following intervention with chito-oligosaccharide and resistant starch com...
- 4. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota.
- 5. Effect of lactulose intervention on gut microbiota and short chain fatty acid composition of C57BL/6J mice.
- 6. Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs.
- 7. Pharmacological benefits of Acacia against metabolic diseases: intestinal-level bioactivities and favorable modulation of gut microbiota.
- 8. Prebiotic effect of an infant formula supplemented with galacto-oligosaccharides: randomized multicenter trial.
- 9. Dietary cellulose, fructooligosaccharides, and pectin modify fecal protein catabolites and microbial populations in adult cats.
- 10. Spices as Sustainable Food Preservatives: A Comprehensive Review of Their Antimicrobial Potential.
- 11. In vitro fermentation of raffinose by the human gut bacteria.
- 12. Chitooligosaccahrides: Digestion characterization and effect of the degree of polymerization on gut microorganisms to manage the metabolome functional diversity in vitro.
- 13. Effect of Prebiotic on Microbiota, Intestinal Permeability, and Glycemic Control in Children With Type 1 Diabetes,

Lifestyle changes references

- 1. Fuccidan Improves D-Galactose-Induced Cognitive Dysfunction by Promoting Mitochondrial Biogenesis and Maintaining Gut Microbiome Homeostasis,
- 2. The gut microbial community in metabolic syndrome patients is modified by diet.
- 3. Pistachio Consumption Alleviates Inflammation and Improves Gut Microbiota Composition in Mice Fed a High-Fat Diet.
- 4. Interactions between Diet, Bile Acid Metabolism, Gut Microbiota, and Inflammatory Bowel Diseases.
- 5. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH.
- 6. [Clinical benefits after soluble dietary fiber supplementation: a randomized clinical trial in adults with slow-transit constipation].
- 7. Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet.
- 8. Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig.
- 9. Effect of an 8-week Exercise Training on Gut Microbiota in Physically Inactive Older Women.
- 10. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment.
- 11. Nuts and their Effect on Gut Microbiota, Gut Function and Symptoms in Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials.
- 12. Gut microbiome and metabolome in a non-human primate model of chronic excessive alcohol drinking.